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Abstract

The Comprehensive Test Ban Treaty of 1996 banned any future nuclear explosions or testing of nuclear
weapons and created the CTBTO in Viennato implement the treaty. The U.S. response to this was the
cessation of all above and below ground nuclear testing. As such, all stockpile reliability assessments are
now based on periodic testing of subsystems being stored in awide variety of environments.

This data provides awealth of information and feeds a growing web of deterministic, physics-based
computer models for assessment of stockpile reliability. Unfortunately until 1996 it was difficult to relate
the deterministic materials aging test data to component reliability. Since that time we have made great
stridesin mathematical techniques and computer tools that permit explicit relationships between materials
degradation, e.g. corrosion, thermo -mechanical fatigue, and reliability. The resulting suite of toolsis
known as CRAX and the mathematical library supporting these tools isCassandra.

However, these techniques ignore the historical datathat is also available on similar systemsin the nuclear
stockpile, the DoD weapons complex and even in commercial applications. Traditional statistical
techniques commonly used in classical reliability assessment do not permit data from these sourcesto be
easily included in the overall assessment of system reliability. An older, alternative approach based on
Bayesian probability theory permits the inclusion of datafrom all applicable sources. Datafrom avariety
of sourcesis brought together in alogical fashion through the repeated application of inductive
mathematics.

Thisresearch brings together existing mathematical methods, modifies and expands those techniques as
required, permitting data from awide variety of sourcesto be combined in alogical fashion to increase the
confidencein the reliability assessment of the nuclear weapons stockpile.

The application of thisresearchislimited to those systems composed of discrete components, e.g. those
that can be characterized as operating or not operating. However, there is nothing unique about the
underlying principles and the extension to continuous subsystem/systemsis straightforward. The
framework is also laid for the consideration of systems with multiple correlated failure modes. While an
important consideration, time and resources limited the specific demonstration of these methods.
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A Hierarchical Bayes Approach
to System Reliability Analysis

Abstract

The Comprehensive Test Ban Treaty of 1996 banned any future nuclear explosions or
testing of nuclear weapons and created the CTBTO in Vienna to implement the treaty.
The U.S. response to this was the cessation of al above and below ground nuclear
testing. As such, all stockpile reliability assessments are now based on periodic testing of
subsystems being stored in awide variety of environments.

This data provides a wealth of information and feeds a growing web of deterministic,
physics-based computer models for assessment of stockpile reliability. Unfortunately
until 1996 it was difficult to relate the deterministic materials aging test data to
component reliability. Since that time we have made great strides in mathematical
techniques and computer tools that permit explicit relationships between materials
degradation, e.g. corrosion, thermo-mechanical fatigue, and reliability. The resulting
suite of toolsis known as CRAX and the mathematical library supporting these toolsis
Cassandra.

However, these techniques ignore the historical data that is aso available on similar
systems in the nuclear stockpile, the DoD weapons complex and even in commercial
applications. Traditional statistical techniques commonly used in classical reliability
assessment do not permit data from these sources to be easily included in the overall
assessment of system reliability. An older, alternative approach based on Bayesian
probability theory permits the inclusion of data from all applicable sources. Datafrom a
variety of sourcesis brought together in alogical fashion through the repeated application
of inductive mathematics.

This research brings together existing mathematical methods, modifies and expands those
techniques as required, permitting data from a wide variety of sources to be combined in
alogical fashion to increase the confidence in the reliability assessment of the nuclear
weapons stockpile.

The application of this research is limited to those systems composed of discrete
components, e.g. those that can be characterized as operating or not operating. However,
there is nothing unique about the underlying principles and the extension to continuous
subsystem/systems is straightforward. The framework is also laid for the consideration of
systems with multiple correlated failure modes. While an important consideration, time
and resources limited the specific demonstration of these methods.

Background

Problem

Current techniques and analysis tools used to assess stockpile reliability do not permit the
mixture of data from system, subsystem, component, etc. level tests. The methods used
depend exclusively on full scale testing for system reliability evaluation and ignore
stockpile historical data, commercial product history and the judgment of engineering
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designers. Thereis aneed to be able to focus testing on those subsystems where there
will be the largest return for testing dollars. In this case, return on investment is defined
as an increased confidence in stockpile reliability. *Focused' testing such as this requires
atrade-off between the amounts of testing at the subsystem level versus testing at the
system level. In addition, optimal development of test plans requires consideration of the
time dependent nature of material properties (corrosion, thermo- mechanical fatigue, etc.),
costs of manufacturing and testing unique subsystems or components, the historical data
on similar systems (commercia and stockpile), and statistically dependent failure modes.
Fundamental mathematical techniques exist in the open literature to address some of
these issues and have been implemented in various software tools throughout Sandia.
However, existing techniques and software tools do not address the critical issues of time
dependent performance degradation and statistically dependent failure modes. Nor do
they consider the optimal allocation of test resources. More detailed investigation of
these methods will be necessary before a final conclusion can be reached.

Solution Approach

This research is focused on the use of Bayesian methods as the fundamental
mathematical tool for addressing the problem raised above. Particular concerns in testing
complex systems are the high costs of testing and making accurate predictions regarding
performance through the maximum use of all available information. This information
might include, for example, engineering experience on similar systems or experimental
data

To appreciate why a Bayesian approach has been taken, consider the problem of a bag
containing 5 red balls and 7 green balls (Jaynes 1989). On a particular draw we choose a
ball, with probability 5/12 and 7/12 of picking ared or a green ball respectively. If, after
theinitial selection, the ball is not returned to the bag, then the chances of picking either a
green or red ball on the next selection depends on the prior selection. On the other hand,
if no information regarding the result of the first selection is available and a green ball is
chosen on the second draw, what can be said about the probability of choosing ared or
green ball on thefirst pick? Intuition suggests the results of the second selection should
not influence the probability of choosing ared or green ball on the first draw. However,
before answering this, consider the situation where there are only 1 red and 1 green ball
in the bag Clearly, the information available as a result of the second draw influences
the guess as to the first selection. It isthis use of information in a conditional manner
that provides additional insight into problems not otherwise possible and is the keyto a
Bayesian approach to test plan design and data analysis.

Why Bayes Methods for Stockpile Assessment?

From 1945 to 1963 the reliability of the U.S. nuclear stockpile was guaranteed through a
series of atmospheric tests. After the 1963 Limited Test Ban treaty testing by the U.S,,
Russia and the United Kingdom was conducted underground. Finally, the
Comprehensive Test Ban Treaty of 1996 banned any future nuclear explosions, testing of
nuclear weapons, or any other nuclear explosions and created the CTBTO in Viennato
implement the treaty. As such, all stockpile reliability assessments are now based on
assessment of subsystems being stored in a wide variety of environments.
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However, in addition to these tests, as the stockpile is brought in for aging and
surveillance inspection, datais collected on materials degradation, component
performance drift, etc. . The limited test and inspection data that is available provides a
wealth of information for assessment purposes. These test results feed a growing web of
complex physics-based computer models for assessment of stockpile reliability. Until
approximately 1996, it was difficult to relate the deterministic materials aging test data to
component reliability. At that time efforts were initiated to develop a suite of
mathematical techniques and computer tools that would permit an explicit relationship to
be explored between materials degradation, e.g. corrosion, thermo-mechanical fatigue,
and reliability. This suite of toolsisreferred to as CRAX and the mathematical library
that supports these tools is Cassandra.

However, in addition to explicit experimental testing of material properties, an abundance
of historical datais available on similar systems in the nuclear stockpile, the DoD
weapons complex and even in commercial applications. Unfortunately traditional
statistical techniques commonly used in classical reliability assessment do not permit data
from these sources to be included in the
overall assessment of system reliability.
A Bayesian approach to reliability
assessment permits the inclusion of data
from al applicable sources. The datais
brought together in alogical fashion
through the repeated application of
inductive mathematics.

To understand the usefulness of the
Bayesian approach ard the impact on the
test programs being conducted, it is best
to examine a very ssmple example that, in
an abstract fashion, contrasts the current
method of stockpile evaluation with a
very smple Bayesian perspective.

Current Approach

The assumptions used in the section are Figure 1. Sample Parameters

based on those outlined in the white paper entitled Analysis of Stockpile Sampling
Strategies, by S. Crowder and E. Collins, 4 May 2000. The distribution of subpopulation
fractions was adjusted dlightly to assure that the fraction total was unity.

Assumptions (see Figure 1)
1. Thegenera population has an overall defect rate of p,. All of the defects
associated with this rate will be lumped together and labeled as failure mode A.
The fraction of the population with only failure mode A is f,
2. A certain fraction of the population, f,, has an additional inherent failure mode B,

that occurs with rate p,. Thisfraction of the population can experience both
failure modes A and B.
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3. A third fraction of the population, f,, has an additional unknown failure mode C,
that occurs with rate p,. Thisfraction of the population can experience both
faillure modes A and C.

4. These three population fractions are mutually exclusive and are representative of
the dominant population failure modes.

5. The faillure modes are pair-wise independent.

6. The current approach to sampling requires a sample of 11 systems to be randomly
selected from the population each year. No bias is introduced toward/away from
selecting particular units; i.e. the sampling is not done in a stratified fashion.

7. Thepopulation fractionsare: f, = 0.80, f, =0.10, f, =0.10 and the assumed
defect ratesare: p, = p, = p, =0.1.

Selection of Sample
Given asample of N units from the stockpile, there is a certain probability that the
sample will be composed of n;, n, and n, samples from the three fractions (where

N =n,+n,+n). The probability mass function of choosing a particular sample
combination can be described with a multinomial distribution:

P(X,=n, X,=n,, X, = r‘g)—nlnlrklf Frgn )
For example, the probability of selecting a sample composed of 8 units from the first
population, 2 units from the second and 1 unit from the third can be calculated:

P(X, =8,X,=2X —1)— (080) (0.10)?(0.10)* = 0.083.

821

The probability of not sampling from the second subpopulation in the first year (of atwo
year sampling interval) can be calculated to be 0.318 and the probability of not sampling
from the third subpopulation is also 0.318. The probability that the sample of 11 will not
contain units from either subpopulation is 0.086. Note that these numbers only relate to
the probability that the overall sample will contain at least one unit from the
subpopulations. Even if the subpopulation is sampled, there is nonzero probability that
no defects will be observed.

Observation of Defects

Given asampleof n, units, the probability of observing s successes or equivalently
d. =n. - s defectsis described by the binomial distribution:

PS=sIp.N, =ni)=ﬁi-!s)!(1- p)*(p)" @

for each subpopulation. To calculate the probability of observing a defect(s) in a sample
of N units, it is necessary to use the Theorem of Total Probability and convolve Equations
land 2:

PS=s)=a P@E=s1p.N=n)P(X =n) 3)
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where the marginal probability mass function is given by:

d 48
P(x,=n)=a a P(X,=n,X,=n, X, =n,). @)
n=ln =L
Care must be taken when calculating the probability of observing defects for each of the

failure modes since the total number of samplesis limited to a specified number, in this
case 11. Once the number of samples from two subpopulationsis chosen, n, n., the

i j?

number of samples from the remaining subpopulation is determined: n, = N - (n +n;).

Since there will always be N=11 samples that can be used to detect failure mode A, the
probability of observing s successes is governed entirely by Equation 2. The probability
of not observing afailure in the general population that can be traced to the common
failure mode A can be calculated to be 0.314 and the expected number of years until a

defect of type A isobserved is %1_ 0.314) »1.5years. This number isindependent of

whether targeted sampling is accomplished.

Utilizing Equation 3, the probability of not observing a defect with aroot cause
attributable to failure mode B during a random year of testing is 0.895. The probability
of not observing failure mode C isaso 0.895. The expected number of years before

observing at least one defect of failure type B is therefore: %1_ 0.895) »10 years.

Similarly, the expected number of years before observing at least one defect related to
falluretype Cis %1_ 0.895) »10 years.

Alternatively, suppose a sample of 4 units is selected from a specific subpopulation, e.g.
the subpopul ation associated with failure mode B. Then for that subpopulation, the
probability of observing § successesis again governed entirely by Equation 2. The
probability of not observing a defect in the general population that can be traced to the
common failure mode B can be calculated to be 0.656 and the expected number of years

until a defect isobserved is %1_ 0.656) » 3years.
Considering that there now remain at most only 7 samples to detect failures for mode C,
the probability of detecting a defect associated with failure mode C can be calculated by
combining Equations 2 and 3. The probability of not detecting afailure of type C is

0.932 and it is expected to take %1_ 0.932) »15years until adefect is observed.

Of course, amgjor fault with this analysis is that assumption that you would continue
targeting a particular segment of the population even after not observing a particular
failure mode. In readlity, one would not continue sampling after there was sufficient
confidence that the original hypothesis of a particular failure mode had been
substantiated. The natural question then arises. how does ore measure this degree of
confidence regarding the significance of a particular failure mode?

Failure Mode A B C

SAND 2001- 3513 5



Prob{ detect defect in 1 yr} 0.686 | 0.105 | 0.105
Expected time to detect defect (yrs) 1.5 10 10
Table 1. Summary of Resultsfor a Random Sampleof 11

Failure Mode A B C
Prob{ detect defect in 1 yr} 0.686 | 0.344 | 0.068
Expected time to detect defect (yrs) 15 3 15

Table 2. Summary of Resultsfor a Targeted Samples of
7 (subpopulation 2) and 4 (subpopulations 1 & 3)

Alternative approach

In the following, an aternative approach is presented which explicitly accounts for data
that might be available from various other testing activities. While there is no substitute
for full scale testing in arealistic operational environment, it is also difficult justify not
considering data from all relevant sources.

Assumptions

The alternative approach is still consistent with assumptions depicted in Figure 1. In the
traditional approach outlined above, it was assumed that a particular subpopulation, e.g.
B, would be targeted for sampling without any prior knowledge that a potential problem
exists. It was aso assumed that this failure mode had an associated defect rate of p,,
even though there was no knowledge that this failure mode exists.

As with the traditional approach, it will be assumed that the number of success, s,
observed in n trials is governed by the binomia probability mass function:

prabability densiy
HITEHET

(1- )|

(5) I"ll failure mode A

P(stlp’N = n): f(Sl p): S!(n' S)!

on

However, in this alternative approach it
will be assumed that the rate at which L
defects occur is arandom variable, i.e. the S IR

true defect rate for each subpopulation is A failre modesDand G
assumed to be unknown. Based on o TN
information available prior to the sample A
generation and testing, the probability / e

density functions are assumed to be 0.2 04 0o ca
characterized by a beta density function: defect rate ()

Figure 2. Probability Density Functions
of Defect Rates

SAND 2001- 3513



_any
9P = F5)e(n,-5) "

where: G(n) = 5 X" *exp(- x)dx, and s, n, are parameters of the distribution.

“H(1- p)* " 0£p£l (6)

After conducting a series of n tests and observing s successes, a new estimate of the
defect rate can be calculated. Bayes theorem provides a relationship between the new
defect distribution (the posterior distribution) and the prior distribution (Equation 6):

f(sIp)a(p) _ f(sIp)a(p)
(sl p)a(p)d e
( pP)a(p)ap
Given the assumption of a genera beta density function as the prior distribution on defect

rate and a binomial distribution on the number of successes, the posterior distributionis
also a beta distribution:

g(pls)= (7)

G(n, + n)
Qs +5)G(n, + n- §- 5) "

a(pls)= ®9 N1 p)™TeIt 0L pEL (8)
Observation of Defects

The probability mass function of the number of successesin n trials (considering all
possible values of the defect rate predicted by the posterior distribution) is the beta
binomial distribution:

1
f(9=@f(slpa(p)dp
5 - )
- n|G(nO)q% + $qn0 +n SJ S) 0£ S£ n
d(n- 9!G(n, + N)G(3)G(n, - )
The function, f(s), can be used to calculate the probability of observing one or more

defects in a sample of n units given the current test data and prior information on the
underlying defect rate.

For this example, it is assumed that during the surveillance program there were 23 tests
conducted and 5 failures were observed related to failure mode B. No failures have yet
been observed for failure mode C. These numbers can be modified to specifically
address the testing that was accomplished for a particular component.

The estimate of the number of years to detect a problem is greatly simplified and is based
on not updating the failure/success information that is gathered during testing each year.

Failure Mode A B C
Prob{ detect defect in 1 yr} 0550 | 0.600 | 0.556
Expected time to detect defect (yrs) | 1.82 1.67 1.80
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Table 3. Summary of Resultsfor Targeted Samples of
7 (subpopulation 2) and 4 (subpopulations 1 & 3)
Using Alternative M ethodology

Summary

The use of condition-based logic — given this information then | expect these results—
contrasts greatly with more popular approach — this exact situation has happened many
times so | expect it will happen again, or equivalently — this has never happened before
so it will never happen in the future. The application of Bayesian methods and inductive
reasoning in general, permits the analyst to provide answers to a variety of questions with
increased confidence.

The above very smple example demonstrated how, at no additional cost, existing data
could be included in the reliability assessment and highlight a potential problemin a
significantly shorter period of time.

The objective of this research is to explore the application of Bayesian methods in
assessing stockpile reliability and the use of these techniques in devel oping test planning
strategies that will provide the nuclear weapons community with increased confidence in
the system reliability being reported.

Alternative Bayesian Techniques

Within the broad family of Bayesian analysis techniques there are two broad frameworks
for integrating test data from various sources and at various system and subsystem levels:
empirical Bayes and hierarchical Bayes. The terms ‘empirical’ and ‘hierarchical’ are
unfortunately common in the literature; all Bayesian methods are empirical in nature and
all can be described as being hierarchical in the fashion in which data is accumulated.

Hierarchical Bayes (HB) is the more recent addition to the family and is more efficient
than the traditional empirical Bayesian approach and has been chosen as the general
direction for future research. HB approach is also less sensitive to the choice of the prior
distribution parameters, typically the source of much discussion. A very brief discussion
of each method is provided in the following sections.

Empirical Bayes

The foundation for empirical Bayes, or more specifically, parametric empirical Bayes,
has been in place since von Mises in the 1940's, but really came into prominence in the
1970’ s with the series of papers by Efron and Morris, (e.g. Efron and Morris 1972).
There have been a number of excellent publications in which the authors have taken the
effort to explain the theory and logic behind empirical Bayes (Casella 1985, Deeley and
Lindley 1981, Kass and Steffey 1989 and Morris 1983) and its relationship to other
statistical techniques.

The following discussion draws heavily from the example presented in Gelman, €t. al.
(2000, p. 120). The example has been modified dightly to provide some intuition to
stockpile reliability evaluation.
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Example

Assume that success/test data from one particular weapon system is available from
previous test cyclesis summarized in Table 4.

The objective of the effort is to edimate the probability of failure or defect rate, p. 1t will
be assumed that the number of failuresin each of the 10 tests (9 previous, 1 current), will
be binomial distributed random variable with a given a defect rate p. The population
from which the samples for the ten tests were drawn will be assumed to be absolutely
homogeneous.

Further, we will assume that p has a prior distribution described by a Beta probability
density function with known parametersa and b: B(a, b). The posterior distribution of p
after test 10 is dso a Beta distribution: B(a+1, b+4). Using the traditiona statistical
approach of method of moments where:

_E(PR- E(P)]

V(p) :
a=(@ +b)E(p)

these parameters can be estimated from the data: a = 0.6, b = 3.13. The posterior
distribution is therefore B(1.6, 7.13) with a meanand variance of 0.183 and 0.015,
respectively. Compared to the estimate of p from the current data, 0.25, the posterior
estimate of p is significantly smaller (p=0.183).

a+b

Some subtle problems exist with the above approach. First, the use of point estimates for
a and b are arbitrary and lack consideration for modeling uncertainty. Second, if there
was interest in performing individual analyses on the 9 previous tests, the data would
have to used once to form a prior and then again as part of the posterior. Data would be
used twice and result in an overly

conservative estimate of the defect rate p. Test Units Failures | P estimate
In general empirical Bayesian methods tested - b/ P
represent only an approximation to afull 1 5 1 0.2
Bayesian analysis. It does not represent a

true Bayesian analysis of the datasince a 2 4 0 0.0
traditional statistical approach was used to 3 5 0 0.0
estimate the parameters of the prior

distribution. Alternatively, in a 4 6 1 0.17
hierarchical Bayes approach, data 5 4 1 0.25
analysis, al prior and posterior 6 7 5 05
distribution characteristics are estimated '
in an integrated fashion. 7 5 0 0.0
Hierarchical Bayes 8 6 0 0.0
As the section title suggests, the 9 6 2 0.33
distinguishing feature of the alterative Tota 45 7

approach to empirical Bayesian analysisis

the hierarchical nature in which 10 S 1 0.25
information is accumulated. Define Table 4. Empirical Bayes Example
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y={y,.....y\ } to be aset of independent and identically distributed samples and the
associated likelihood function is therefore 1(g,p | y) . Using the example from the
previous section, it will be assumed that the variable q ={a, b} isan unknown
hyperparameter vector described viaa prior distribution f(q). Inthe previous example,
it was assumed that q ={a, b} was known and only required estimation. Now it is
assumed that it is a random variable and the uncertainty in the hyperparametersis

addressed explicitly. (The variable p will be generalized as a vector quantity, p, to allow
for multiple distribution parameters.) The complete Bayesian analysis for characterizing

the density function f(p|y) requires a description of the vector of random variables
(p,q) with joint prior distribution: f(p, q): f(p|q) f(q) andjoint posterior distribution:

fP.aly)s f(pa)@ealy)
= f(p,a)f (v |0

Note that the joint posterior density function: f(p, q |y) can be written as a product of the
hyperprior f(q), the population distribution f(p |g) and the likelihood function

l(g,p | y) . Under the assumption of an independent and identically distributed set of
samples, y = {yl,. A } an analytical expression for the conditional posterior density of
f(p|q,y) can be easily constructed as the product of the density functions f(yi). Note
asothat f(y|p,g)= f(y|q) sincey does not directly depend on p since q(p).

In the case of conjugate density functions a solution is available directly. Once an
expression for the joint posterior function is found, the margina posterior distribution can
be found through direct evaluation or viaintegration:

f(paly)

== Of (p.d | y)dg.
falpy) O Paly)aa

f(ply) =
Example revisited

We will again assume that the number of failuresin each test is an independent
observation from a Binomial distribution: y; » Bin(n,,p;). Inaddition, the parameter p

will be assumed to be a random variable following a Beta distribution: p;, » B(@,b).

The joint posterior distribution is defined:
f(pa,bly)n f@,b)f(plab)i(yla,b,p)

Gla +b) o ey
uf@, b)C_)le( )G(b)p"‘ 1- p,) Op - p;)

The margina distributions of the parameters can then be found using the conditional
f(pably).
f(pla,b,y)’

N C@+b+n,)

f(pla,by)= O

probability expression, f(p|y) =

a+yJ _ b+ni-yj-1
)Ga+ry)abrn -y &P
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N Ga +b)G@ +y,)Cb+n,-vy,)

f(a’b |Y)|'l f(a!b)g G@)G(b)Ga +b +n))

To proceed, it is only necessary to describe a hyperprior distribution function for
g={a,b}. Typicdly thisdistribution is taken to be relatively noninformative so avoid
dominating the solution. Regardless of the choice of hyperprior, it is critical that it be
mathematically feasible and resultsin alogical marginal posterior distribution.

An dternative to the analytical approach outlined above is of simulation to construct the
various conditiona density functions.

1. Generate a sample of the hyperparameter vector g from the marginal distribution
function, f (q | y) :

2. Given g, generate a sample parameter vector p from f(p|q,y).

3. A population sample can be then be generated using the likelihood function
I(y |9.p).

Generally these steps will be difficult to accomplish due to the problems associated with
generating samples from complex conditional distributions. A simulation technique
particularly suited for this task, Markov Chain Monte Carlo ssimulation, will be
introduced in the following section.

Two recent applications of hierarchical Bayes methods in the structural reliability area
are Wilson and Taylor (1997) and Celeux et a. (1999).

Graphical Representation of Hierarchical Models

Hierarchical models have been increasingly popular and have a potential application for
solving very complex problems. The structure of hierarchical models lends itself easily
to agraphical depiction of the relationships between various model constructs using
directed graphs. These graphical cartoons are useful for organizing information and also
for constructing the posterior distribution functions discussed above.

Directed graphs are essentially a set of nodes connected with a set of directed edges or
arrows which depict the informational dependencies between the nodes. Those nodes
that feed information to subsequent nodes are considered parent nodes. Each node is
considered independent of all other nodes except parent nodes and those nodes for which
that node is a parent.

There are three types of nodes:

1. Constant nodes have no parents and represent fixed quantities in the analysis.
These nodes are represented by rectangles.

2. Stochastic nodes may have parents or children and represent, typically,
unobserved random variables. They are commonly represented by circles on the

graph.
3. Functional or deterministic nodes represent functions of other variables in the
graph.
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Conventional depiction of the edges includes the use of solid arrows for statistical
dependence and dashed lines for functional dependence. Note that even though nodes
may have no common ancestor, and thus are marginally independent, this independence
may disappear when other quantities enter into the conditioning structure. Dependencies
are often induced between variables as aresult of observational data. A box surrounding
a set of variables indicates that those variables are conditionally statistically independent
given their parents.

In the classic example of stress-strength interference, g= R- S, where:
fo(rim,s,)P N (m,s r), f(s|lm,syP N(m,s s) and, for example:
f.(mla,b) P Na.b.), f. (s.lg.t.)P Gam(g,t,)andsoon. Asindicated by the

box in Figure 3, the variables R and S are assumed to be independent random variablesin
this example.

With the exception of special simple cases involving conjugate distributions, the
generation of the above mentioned conditional density functions can be extremely
difficult and in some situations impossible. An increasingly useful approach for
generating these distributions is based on assuming that the desired joint posterior
distribution is the stationary distribution that results from a Markov chain. The use of
Monte Carlo simulation methods to generate this distribution is referred to as Markov
Chain Monte Carlo (MCMC) simulation.

Markov Chain Monte Carlo Methods

Fundamental to all Markov Chain Monte Carlo (MCMC) samplersis the ability to
generate random variables from a distribution indirectly without having to calculate the
density explicitly. Asthe name implies, these simulation methods are based on the basic
principles of Markov chains.

AEOO @B O
\/ I S
{ §

¥

"
e

1
!

Figure 3. Interference Example of Hierarchical Bayes
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Let P(x,y) represent the transition matrix for a Markov Chain where P(X,y) represents
the probability of transitioning to a state y given that the current state is x. (Note that

{yP(x, y)=1and P(x,x) may not be zero.) Assuming certain regularity conditions for

P(x,Yy), then after a sufficient number of transitions the probability of being in any
particular state converges to a stationary probability density function p(x). In particular,
if P(x,y) satisfiesthe reversibility criteriap(Xx)P (X, y) =p(y)P(y, X) then p(x) isa
stationary distribution.

For MCMC simulation, the problem is just the reverse: given a stationary probability
density function p(x), what is the necessary transition matrix? A method to accomplish
this was first proposed by Metropolis (1953) and generalized by Hastings (1970).

Metropolis-Hastings

Assume that, as with the acceptance/rejection method above, a candidate density
function, q(x,y), exists for generating possible samples from p(x). (Inthe MCMC
literature (X, y) isreferred to as the proposal distribution.) However, since samples are
being generated from a Markov chain, this density function changes during the
simulation process (depending on the current state). The density g(x, y) can be easily

constructed so that (y q( %, y)dy =1, however it may ot satisfy the reversibility criteria.

The construction of an appropriate state transition matrix P(Xx,y), for y1 x, must
account for the degree to which the reversibility criteriais satisfied. Define the
probability of moving out of state x into any other statey as a(x, y). Thereforethe
matrix describing transitions from x to y must be conditioned on this probability so that
P(x,y)=q(y,x)a(x,y). It can beshown (e.g. Chib ard Greenberg 1995) that

& (y)a(y.x) M
Smmmxw
=1 otherwise

a(x,y)=mn if p(x)a(xy)>0

Thevaueof a(x,y) represents the probably that the i+1 sample is a new sample,

X,, =Y, orisidentical to the existing sample x,,, = x.. Contrast this with the
acceptance/rgection method outlined above where, upon rejection, the sample is not
retained.

The sampling method as first proposed by Metropolis assumes that the proposal density
function is symmetric, i.e. q(x,y) =q(y,X), which simplifies the criteria for accepting or

rejecting the next sample: a(x, y) =min g;gy)) A4

For the situation of a scalar x the Metropolis-Hastings algorithm can be summarized:

1. Assumeaninitial value of X,

2. generate arandom deviate, y (the next potential candidate x value), from q(x(l) )
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3. sample u=U,,

e VX, u
4. If ufa(x;,y)= mnép(y)q(y w) AUP X =Y €S8 Xiiq) = Xy
é)(x(i))q(x(i)ay) 9]

5. repeat steps 2-4 until a stationary sequence of variables of sufficient length has
been generated

The proposal distribution can be of any form and a stationary distribution p(x) will be
generated. However, for faster convergence and better mixing, it is generally desirable
that the proposal distribution be similar to the desired stationary distribution.

For avector valued X, it is often desirable to sequentialy update the individual
components of the vector. Define x; = {x(i)l, Xip1eees x(i)n} to be the i n-dimensional
sample vector generated and let X, ; = {x(i)l, Xiyar s Xy 10 X(iyjore -+ x(i)n} be the same
vector, but with the j'" element removed. The Metropolis-Hastings algorithm then can be
described:

1. Assumeaninitia value of X, = {x(o)l, x(o)z,...,x(o)n}

2. Generate arandom deviate, y;;,, from the proposal distribution q(y(i) | X Xy- J.).
Thevalueof y,;, represents the updated value of the i component of Xy Where
the other elements have been updated in a previous iteration.

3. Sample u=U,,

gp(y(i) | X6y Jh(y(i) | X010 X - i) u

Q ,1L:JI3 i+ni — Y
g)(x(i” |X(i>i):|(x(i)1 |y(i)’X(i)-j) H X1 = Yo

ese Xy, = X;);- Theother elementsof x;, are not updated.

4. If u€a(x;,Xq).;Ye)=mn

5. Steps2-4 arerepeated until al elementsof x;,,, have been updated.
6. Steps2-5 are repeated until a stationary sequence of samples x;, isavailable

It is very important to note that the distribution p(Xx) needs to be only known up to a

multiplicative constant, since this constant cancels out in the analysis. This can be

critical in those situations in Bayesian reliability analysis where the constant can be

difficult to calculate.

Th N . o o pX .
e availability of the full conditional distribution p(x,; | X )=————— M P(X) is

(P(X)dx,
critical to MCMC analysis and is the subject of much of the literature. Common
approaches will be outlined in the following discussion.
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Example

Let p(x)= l—)d e and the proposal

distribution be a simple random walk: Frequency
X+ . .
y=1 with equal probability
tXp -1

Since g(x,y) = (y,X) for arandom wak

process, the dependence on q drops out. x

The Metropolis acceptance ratio is

therefore: Figure 4.c Metropolis-Hastings Results
p(y) | | ¥- X
Tp(x) M

If u=U,,, then the transition to a new state will be accepted if u<a and will be rejected
otherwise. Figures4.ab,cillustrate theresultsfor I =4.0, x,, = 20 and asample size of

N=1000. Figure 4.ais of thefirst 100 samples and Figure 4.b is the complete history of
1000. Figure 4.cis a histogram depicting the resulting frequency distribution for the
variable x.

Gibbs Sampling

Gibbs sampling is a specia case of the Metropolis-Hastings sampling algorithm. The
proposal distribution is assumed to be:

q(y(i) |X(i)ix(i)-j): P (y(i) | X i)

When this distribution is incorporated in the Metropolis-Hastings algorithm, the
probability of accepting atransition is one. Gibbs sampling is identical to the iterative

4

L) .
- =
- K8
22 ny ]
x M= o
153 'n x :l:__l J
- o4
N (EE
12 e |
Lik |
LIS |
B i, . g | y :
- i {1 T | 14 !
| I TP Q" b
T éhg k}y ‘q 1
4 i
. zif..gfﬁ.ft IQJ
" 23 ElR ol i 1) 9 w0 e !‘!IJI.‘ T
Seampio Moo st 108 anly! Samp e Mumbar

Figure4.a-b Metropolis-Hastings Sample History
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algorithm outlined in the previous section with no check for sample acceptance. Using
the algorithm outlined by Gelfand and Smith (1990), a sample from the probability

density function, f(x)= f(x;,X,), can be generated by iteratively samping from the full
conditional distributions f (x| x,) and f(X,|x):

1. Assumeaninitid value of X, = {x(o)l, x(o)z,...,x(o)n}

2. Generate arandom deviate, y;;,, from the proposal distribution p(ya) | X J.). The
vaueof vy, represents the updated value of the j*" component of Xy where the
other elements have been updated in a previous iteration.

3. Step 2isrepeated until al elementsof X, have been updated.

4. Steps 2-3 are repeated until a stationary sequence of samples x;, isavailable.
Once stationarity is achieved the resulting samples represent samples from f(x).

The result of Steps 2-3 are realizations from a Markov chain with transition probability
from x;, to X, givenby:

A
P(x(i),x(iﬂ)): Op(x(i+1)l [Xyio 1> 1 Xy b < I)
=1

Only the full conditional distributions p (y,, |,. ;) are needed for Gibbs sampling. For
high dimensional x, Gibbs sampling can be slow to converge. For thisreason, if higher
order conditionals are available, e.g. f(X,, X; |x,) versus f(X;|x,%), f(X,|X,%),
then the use of those conditionals can significantly speed convergence (Gelfland and
Smith, 1990).

It should also be emphasized that variance reduction methods for generating samples
(Latin hypercube, importance sampling, field analysis, etc.) are still applicable.
Example 1 (following Casella and George, 1992):

Let the number of failures observed on a system be a random variable described by a
binomial distribution:

f(xI p.n)= grap'd- p)"

p! - %pap p

where p is the probability of observing a defect in a particular trial. Given an observed
number of failures, let p in turn be arandom variable described by a Beta distribution:

G(n+a +b)
G(x+a)dn- x+b)

f(plxa n,a,b): p(X+a)-1(1_ p)(n. x+b)-1

wherea and b arereferred to as the pseudo-number of failures and successes

respectively. It isdesired to obtain the distribution of the number of defects, f(x), i.e.
the margina distribution.
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Figure 5.a depicts the sampling history for variable x after 700 iterations with a Gibbs
sampler using a =2, b =4 and n=16. Figure 5.b isthe associated histogram. Since
there is a closed form solution available for f(x):
£(x)= amoGa +b)gx+a)dn- x+b)
&o G@)G(b)En+a +b)

the exact solution is superimposed on the histogram.

=0,1...n

It isimportant to note that in those cases where the full conditional distributions are not
available in closed form for easy sample generation, the analyst must resort to a
Metropolis-Hasting algorithm.

214 [

F l” | | ! L | | l !..r ; ux
|h =r T, I i Wy o
:ih I"lf l”"gﬁ,!.‘ -%Iu': I Ll nllT g!J ;ﬁ i]% ot

il £iK} N |

Soamaple Paaiarinee

Figure5.a-b Resultsfor Example 1 of the Gibbs Sampler

Full Conditional Distribution

As noted previoudly, for Gibbs sampling, only the full conditional distributions are
required. By specifying the relationships between these conditional distributions it is
possible to completely describe the entire model. These relationships are fully
characterized by the directed acyclic graph (DAG) discussed in the hierarchical section
above. The DAG represents the conditional dependencies of the full model before any
datais collected. When datais introduced to the model, the statistical relationships
between variables may change.

Let v be the set of nodes on a DAG of interest and v; be a particular node. Define v, to
be set of nodes without the node v;. A parent of v; is any node with a directed line from it
tonodev. Lauritzen, et a. (1990) showed that a DAG model constructed in the above
manner fully describes the joint distribution of al the random variables in terms of the

conditional distribution of each node: f(v) = O P(v, | parents [v.]) . Thefull conditional
distribution is therefore
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_fx)
f(X| ) of(x)dx

nf(x)= f(xj,x_j)

U termsin f(x) involving  x;

~

=P(x;|paents[x]) O  P(w,|parents [w])

x; T parents [w_ ]

prior
likelihood

If full conditional distributions are difficult to sample from, an adaptive rejection method
can be used (Gilks, 1992).

Example

Using the stress-strength example depicted in the DAG above, the joint distribution of all
the parametersis given by:

f(RSm Sr’ar br’gr’tr’nlss’aS’ s’gs’t )_
f(RIm,s )f(mla,b)f(s, lg.t,)f(SIm,s,)f (mla,b,)f(s lg.t,)

Exchangeability

Assume that over aperiod of time, a series of N binary (go/no-go) tests were performed.
For the j™ test, a sample of n; was evaluated and g failures were observed. If thereis no
information to distinguish any of the tests, there were no grouping or unique ordering,
then there is symmetry in the parameters  This symmetry implies that it is possible to
analyze the data regardless of the order in which the data was observed and processed,
i.e. it isequaly redistic to andyze the data as (ql,qz,qs,...,qn) or as (qn,qz,ql,...,q3). In
this situation, where all the parameters are assumed to come from identical distributions,
it is appropriate to use an exchangeable model. When additional data becomes available
to support differences, then exchangeability may still be appropriate. For example, if
after a series of tests, system age is identified as a distinguishing feature, this feature may
be explicitly included in the moddl. In this way the dependencies may be encoded or
grouped in such a manner that the resulting model is then exchangeable (Gelman, et a.
2000, p. 123-126).

Bayesian System Reliability Analysis

System Level Analysis

Over the past 35 years there has been considerable effort expended in characterizing the
reliability of a complex system using Bayesian methods. The reader is referred to the
many fine articles in the literature as well as the many books such as the classic by Martz
and Waller (1982) and the more recent Savchuk and Tsokos (1996).

The mgjority of the literature concentrates on the development of approximations to
unique system configurations and failure density functions such that the results are
mathematically tractable. However, it isfelt that the current reliability analysis problems
to be addressed with this research can be better met with advanced computer smulation
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methods. This approach requires a minimum of compromise in utilizing al available
component and system operational information. In addition, prior distribution functions
and system configurations are not ‘forced’ onto the analysis.

The material in this section is presented more to introduce notation necessary for future
discussions rather than for completeness. The emphasisis on developing the
mathematical foundation needed for combining system and component test information.

System Definition

It will be assumed that each of the i,i =1,...,n, components or subsystems, as well asthe
entire system can be in one of two possible states. operational or failed. [Note that all of
the methods to be discussed can be generalized to multi- state system operation, and the

possible dependence on time is understood.] The vector x= {xl,. . xn} and the variable
y completely represent the state of the subsystem and components respectively, where:
_ 11 if (sub)system operating

. =1,...n
10 if (sub)system failed

Yi X

The system state is related to the subsystem states through a function f (:) referred to as
the system structure function: y=f (x,,...,X,).

Coherence

Consider two n-tuples: (a,,...,a,) ad (b,,...,b,). Thedominanceof a overb is
denoted: a 3 b andisdefined: a3 b iff a,3 b, i=1...,n. Equivalenceof a andb is
denoted: a =b and defined: a =b iff a, =b,,i=1,...,n. A gtructure function, f(x) is
said to be coherent if: x¢3 x@tb f (x§3 f (xd&) for all vectorsx” and X2

Réiability

Let p, the probability that subsystem i is functioning, be arandom variable with
distribution function p( p,) defined over the unit interval. The expected reliability of the
i™ component istherefore: p =E[p,]= (¢ pp(p)dp,. It will be assumed that, given p,
X; isindependent of p,," ;.; and, given p= (p1 pn), the X, are all mutually
independent.

For a series system, the reliability is given by:
= (P{y=1lp, P,r.... B} P(Py R, P, )P
= O p)p(R.,P;s-, P)DP
where p(p, P,,---, B,) IS not necessarily equal to p(p)p(R):--P(p,). Finaly, astatement
regarding the expected reliability of the system can be constructed:

p.= E[p] = (f (/)p(p)dp. Except for unique situations, evaluation of p, is difficult to
compute and various uncertainty analysis methods, e.g. Monte Carlo, must be applied.
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Aggregation of System/Component Data

A number of authors have suggested methods for combining subsystem and system data
under a Bayesian framework, including: Mastran (1976), Mastran and Singpurwalla
(1978), Martz, Waller, and Fickas (1988) and Martz and Waller (1990). In general, these
papers, along with a number of others, support analysis approaches that permit the
inclusion of test data from a number of levels of system indenture, into an overall
estimate of the system reliability.

The methods al depend on a combination of analytical techniques for combining test
information and inherently depend on assumptions regarding the underlying distribution
function. The approach presented in this paper is far less elegant, but applicable to wider
array of complex system configurations.

Caution Regarding Aggregation ompaannt
As noted in the papers above, the wr
aggregation of system and component _combin: componcni
level data can become involved. In priors Inle sysiem p

generaL the sygem level rdiabil |ty opdate sysherm prior g Failure o COIpOTENE
distribution derived from component wiTh amgrEr e fallre At Lz fatlre ot
datais used as a prior the reliability upate component
distribution based on system level st
data (Figure 6). However, when CROMEILR £y

. S, slruzium el pedel using
component and system level failure cOmprREnl postenara
and performance information is e

"'\.‘ —_

collected at the same time, Syekous KalizllLily

aggregation of component dataintoa  Figure 6. Failure Data Processing Options
system level analysis may not result

in the same reliability prediction as obtained from the system data alone, e.g. Azaiez and
Bier (1995).

Reliability Simulation Using MCMC

The preceding discussion has laid out the pieces that comprise a foundation for
conducting a Markov Chain Monte Carlo analysis of acomplex system. The following
discussion focuses on the application of these techniques in the reliability assessment of
such asystem. The discussion begins with the development of two methods for
performing component level analysis. Also addressed is the issue associated with the
inclusion of experimental and historical data in the component reliability assessment.
Finally, an approach for combining component level information into a system level
reliability evaluation is presented with a suitable eye on the impact of aggregation of
data

Component Level Analysis

For now, assume that each component can be tested and results in the observation of
either asuccess or failure. In thisbinomial sampling there are n tests performed, s
successes observed and p is defined to be the probability of success on asingletria. The

SAND 2001- 3513 20



conditional distribution of the number of failures
-------------- observed given a particular probability of successis

[1 therefore:
n! S n-s
;\\ P(S=s|pN=n)=f(s|p=g—5 P L P"" p>C
LS si(n- 9)!
MY
f! / Let g(p) be the prior density function describing the
Si —m={ ) probability of failure. The posterior distribution
- function is then given by:
Figure 8. DAG for Example 1 f(s s n-s
opl9 = IPIO i oy

¢ f(slpa(p)dp

Prior distribution — Example 1

Each component will be assumed to be highly reliable and, following Chen and
Singpurwalla (1996), the prior distribution on the probability of failure will be assumed
to be atruncated beta distribution: Beta(1,a), defined over the interval (g,1) (Figure 9.a):

1 -1 b-1
a)=——p*(1- O<p<l, b>0
p(plg.a) mamp 1- p) p a,

=a(l- p*'/@-9f g<p<l O<ac<l

Since the component reliabilities are assumed to be much more likely to be large, the
valuesfor a will be limited to the interval (0,1).

Further, assume that the lower limit on the reliability, g, is a random variable that is more
likely to take on smaller values. It isaso defined by a beta density: Beta(1,a +1),
p(gla)=(a +1)(1- g)*,where 0<g<10<a <1. Notethat (see Figure 7.b) asa
becomes smaller, the hyperprior p(g |a) approaches a uniform distribution.

Figure 7.a Prior Family Figure 7.b Hyperprior Family
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The directed acyclic graph

depicting the relationships between 0L

the prior and hyperprior random % I ﬁﬂ b Bb

variables and parametersis ; ~ 0

presented in Figure 8. " 4 \i
Ve

Prior distribution — Example 2 R
In this situation, the first stage prior S
of the reliability will be assumed to d - lp’
follow as beta distribution defined — =
on the full interva (0,1).

Figure9. Componrent DAG for Example 2

_ 1 a-1 _ b- o
p(pla,b)——B(a,b)p (1-p~* 0<p<l ab>0

A common approach is to redefine the variable p via alogit transformation:

&epo

r=logg 5

It iswell known that if r is assumed to be a Gaussian random variable, then p is
approximately beta. The second stage distributions for the first stage distribution
parameters, ,s can then be conveniently constructed. For example, mcan be assumed
to be an improper uniform distribution defined across the real line and nl /s ? canbe

assumed to follow a ¢ distribution where | and n are specified.
However, for the current situation, it will be assumed that the first stage prior remains

described as a beta distribution and that the parameters, a and b, are each random
variables further characterized in a second stage probability distribution.

The second stage distribution will be assumed to be a two parameter Weibull:
f(x) —iae((-ja _1e< gaed_')a ﬂ x>0,a,b>0
“bébs g &bs g @
The DAG of this multi-stage analysisis depicted in Figure 9.

Component Data

Given that a set of n independent tests are performed on a component with sand f
successes and failures are observed, then the data d = (n, <) can be incorporated into the
posterior distribution function: p(p|a,b,d).

Construction of Full Conditional Distributions (without system level test data)

For this example afirst stage beta and second stage Weibull distributions will be
assumed. Thejoint distribution of the data and the parameters of this model are then
described by:
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gpabd)= O g(p [ablg(g®)

a+sl(1 p)b+fla a $ao @Qﬁ eI&ao &bo Pu (A)
B@ab)  bpb, 8bg &, o eTEb s & o bu

To construct the full conditional distribution p(a|b) it isasmple matter to pick out
those termsin (A) which involve the parameter a:
expg- a0 U

8b ﬂ H

p(alb) pa='p**
Similarly, the full conditional distribution p(a|b) can be found:
6" U U

a,-1 b+f-1
p(bla) pb™*(1- p) ap&gbg ;i

Since these distributions cannot be sampled from directly, the Gibbs sampling approach
can not be used directly. It is necessary to augment the sampling with a Metropolis-
Hasting rejection step. Note that the full conditional distributions need to be known only
up to a multiplicative constant since that constant will cancel in the reject step.

Simulation

The proposal distribution () till needs to be specified. For the parameters a and b, the
distribution will be assumed to be a Gaussian distribution with mean equal to the current
value of the parameter and a standard deviation of twice the standard deviation of the
associated marginal distribution. For p, the proposal distribution will be assumed to be
Ug: -

1. Assumeinitial values for {p(o), a(o),b(o)}. Theseinitial values are assumed to be
the means of the respective marginal distributions.
2. Generate arandom deviate for the parameter a:
a. Generate a candidate random deviate, g;,, from the proposal distribution
Yiy ~ N(8;_4,4s 2.
b. Sample u=U,,
If u£a(y(i) ;.11 P ) =

mn" (a y(|) |Q| 1) p(l 1))](3' y(|) | (i- 1) p(l 1))
g p(a(| y 1B 1 P 1)h(a(| o B s P 1))
ése g;,, = ;). Theother parameters, p and b, are not updated.

1UD iy = Yo

3. Generate arandom deviate for the parameter b:
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a. Generate a candidate random deviate, by;, from the proposa distribution
Yoy ~ N(Qr1y45§)-
b. Sample u=U,,
If uUE a (y(i)’a(i),t}i-l)a P 1)) =
b=v. D b=v. o} u
rringp( Yo 13, P o Ja0= ¥ 13, R"l)),llglb B = Yoy

e p(qi_l)la(i), p(i_l))q(b(i_l)|a(i),p(i_1)) ¢

else b, =hy;). Theother parameters, p and &, are not updated.

4. Generate arandom deviate for the parameter p:
a. Generate a candidate random deviate, p;;,, from the proposal distribution
Yiy ~ Uoa
b. Sample u=U,,
1T U a Yy ki Piy) =

min g’ (P= vy 130 pi(P= vy | ati)’b(i))Jgp B = Vo,
g p (p(i-l) |a(i),b(i))q(|qi_1) | ari)'b(i)) ¢

else .y = By The other parameters, a and b, are not updated.

5. Steps2-4 are repeated until a stationary sequence of samples x;, isavailable

Example

L et the conditional priors on a and b be Weibull distributions with means r, and rr,
respectively. These statistical characteristics have some intuitive relationship to the
Bayesian concept of pseudo-successes and pseudo-failures. These parameters are
variables input by the user depending on component historical information. For the
following example, these parameters are assumed to be m,=9.0 and m, =1.0.
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Figure 10.a-b Resultsfor Component Reliability Example
Since there are two Weibull parameters, a second assumption is necessary. It will be
assumed that the shape parameter, a, of both Weibull distributionsis 3.5. From
experience, the values of this parameter in the range [2.8-4.2] provide a consistent and
stable response over awide range of possible situations. For those situations where the
component is considered to be very highly reliable, a shape parameter of 1.0 has al'so
been found to be suitable.

These two conditions can be combined to estimate the location parameter of the Weibull
distribution via the relationship: b, =m/G(1+1/a,). The standard deviation of a and b
must also be found and can be calculated using the expression:

2 2€ 0
s ' =b ?e
approximately 0.316. Using the parameter means asinitial starting values, Figures 10.a
and 10.b depict the results for the parameters a and b during the course of 1000
simulation runs. Figure 10.c isaplot of the observed component reliabilities p(p|a,b)
over the 1000 simulations runs and Figure 10.d is the associated frequency histogram.

— +1@u The standard deviation of both parametersis

1 il | | 0,
1|[. [l '
EI'."-” il li i..ll IL I::; I|I J I| 1 [ | || || |
I lmgl_l_1l | i I | 1 ” _ ekl DA
18 | I "|=@ g |
“"\ii f | | .| | - : :i -i na
| |
0| i LI
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Figure 10.c-d Resultsfor Component Reliability Example
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From this analysis, a point estimate for the component
reliability can be estimated:

3 {3 p
E[pl=a p(p. |ab) /N = 0.833, dong with the —(1 - (2}
i=1

associated Bayesrisk: s , =0.1102. Based onthe

simulation results, a 10% lower confidence limit of : :

' e F 12. Simpl stem
0.68 and an upper 90% upper limit of 0.95 can be 'gure mple Sy
estimated for the component reliability.

Stationarity

A critical consideration when using any MCMC technique is the number of smulations
required before stationarity is achieved. Given the above stage one and stage two
distribution assumptions, the simulation process stabilizes very quickly. If instead of the
mean values for aand b, arbitrary values had been chosen, the random process will still
converge very fast as seen in Figures 11.a-b. Inthis case, initia values of 5.0 and 5.0
were used for initia values and the process becomes provides useful simulation results
after only approximately 25 simulations.

System Level Analysis with Component Data

Independent Failure Modes

Before delving in the more complicated aspects of component interaction, asimple
demonstration of the above approach will be provided. The system in question will be
the simple 4 component system depicted in Figure 12.

An estimate of the system reliability will be constructed by combining simulated
component reliability estimates through a coherent system function:

R=f(p)= ppfl- @- p)(A- p)]

(Re represents the reliability of the system based on component data, while Rs is defined
as the system reliability based on system level data.) The vector of component

5 5
vy boog
] 1
2 | 2|
il .H.
- o ! [ Y 1 e 1
1 " 1 ! I ) 7] L —
.I:
L] e 1] ET) =1 o 1 " 1] 41 il 0 | f]
Simulstion Numbor Simulation s bar

Figure 11.a-b Results Using Extreme Initial Values

SAND 2001- 3513 26



reliabilities, p, is generated using the MCMC algorithm discussed in the previous
discussion. Each vector of simulated component reliabilities is transformed using the
system structure function and a system reliability estimate is collected. The result isan
estimate of the posterior distribution of the system reliability: p(R. |g,d) given historical
information and current failure data on each of the components. As with the component
analyses, point and interval estimates of R. can be computed. Also availableisan
estimate of the Bayes risk associated with using the historical component failure
information.

The first stage prior for al for components is assumed to be Beta(a,b) and the second
stage prior for al first stage parameters is assumed to be Weibull(a ,b). The parameter
values for the second stage priors are presented in Table 5. Given mean values for the
parameters, and the assumption of a Weibull with shape parameter of 3.5, the location
parameter for the Weibull can be easily found for each
second stage prior. No historical data was assumed to

Component | m, n

be available on any of the components. P1 1.60 | 0.18
The4C software analysis package was used to P2 9.10 | 1.01
complete the system level reliability analysis based on 0 18191 227
the component information. A histogram of the 3 ' '
reliabilities for each of the componentsis presented in P4 3.94 | 0.92
Figures 13.a-d. Figure 14.adepictsthe system Table5. First and Second
reliability under the situation where no historical data Stage Parameters

isavailable. The best estimate of the system reliability
is0.68 with a Bayesrisk of 0.195 and an 80 percent confidence interval of [0.39, 0.90].
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Figure13.a-b Resultsfor Components1 and 2
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In contrast, Figure 14.b depicts the situation where 10 tests were performed on
component 1 and 9 successes observed. Combining this data with the prior beliefs about
component one resultsin a new estimate of the system reliability of 0.74, a Bayes risk of
0.133, and an 80 percent confidence interval of [0.57, 0.90]. The change in the estimated
reliability is evident in Figure 14.b, but equally important is the increased confidence in
this estimate that results from the additional test data.

System and Component Data Aggregation
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Figure 13.c-d Results for Components 3 and 4
It is often the case that testing is conducted at the system level and information regarding
the failure or success of particular subsystems is not available or not collected. As noted
previoudly in the discussion on data aggregation, care must be taken when interpreting
system level test results and combining this information with component historical failure
data
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Figure 14.a-b Resultsfor System Level Analyses
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In this effort, the system level posterior distribution function that results from combining
component test information will be used as a prior distribution for the system level
reliability analysis. Based on the previous discussion regarding the binomial testing of
components:

ap|s) =KR(1- R)"g(p)
H R°@- R) p(p, |a.0)

where Sand F are the system level ns,
successes and failures respectively.

The posterior distribution function siplab) 04
defined as afunction of a set of
parameters and data, now becomes the
prior distribution for the system

refiability:p(p. |a.d)P g(p).
Thisis generally available as a

. . i le.c :
histogram of M intervals constructed (pilo<) e
from the results of an analysis such as
an MCMC simulation described : — i

03

03]

above. To construct the histogram of " L v 1 us ot
the system reliability based on both P !
component and system data: Figure 15. Elements of Component Histogram
1 .
Glp |SFl= p’- p)p(plad i=1..M

B(SF)
The "™ moment of the system reliability is then given by:

ny 1 '\OA n S F
Elps)= grs @ PlR°- ) 'p(p lad)]
and a point estimate and associated Bayes risk can be easily constructed (see Figure 15
for the definition of p(p, |qg,d)).

Example

The4C software was again used to incorporate system level failure data into a reliability
analysis of the smple system depicted in Figure 12. Results from atotal of nine different
test examples are presented including
the base case where no component and

no system test data are available.
Significant differences between cases o
are highlighted in red. Figure 16 e
depicts atypical prior probability e
density function for the reliability of a o

Componmt for the b& m. Typical 3ﬁ;30¢:\ [ = r =] O 30 @40 &80 =1 ] TR P I [R5 o
sample prior distributions for the I
parameters a and b are presented in Figure 16. Typical Component Reliability

Figure 17. The resulting system Prior
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* Figure17. Typical Parameter Prior Density Functions
reliability probability density function is depicted in Figure 18.

Cases 2-4 illustrate how the assumption of prior information for each of the major types

of components impacts the final system reliability estimate and the uncertainty in the
reliability. (Note that the confidence in the reliability estimate is presented in terms of

the variance of the reliability estimate or equivalently, the Bayesrisk. Asthe variancein

the reliability estimate decreases, the
confidence in the estimate increases.)

The consequences of data aggregation
isinvestigated in cases 5-9. Cases5-7
illustrate the situation where atotal of
10 system level tests were conducted
and failures were isolated to 2
components. Case 5 involves the
situation where all data is aggregated
to the system level for reliability

ties
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Figure 18. Typical System Reliability

estimation. Two different scenarios for failure observation are investigated in cases 6 and
7: first, failures are observed on each of the parallel components, see Figure 19 for typical
componert reliabilities for case 6. Secondly, the failures were assumed to have all

occurred on asingle series unit. The variation in the reliability for these two casesin

comparison to the system level results (case 5), highlights the need for extreme caution
when using system level data for ardliability analysis. In particular, note the difference
in the probability density functions for the system reliability illustrated in Figure 22.

Finally, in case 8 test data is available only at the system level; due to instrumentation
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Figure 19. Typical System Reliabilities— Case 5 and Case 6
costs it was not possible to collect component failure information during the flight test.
This scenario is very typical in operational testing of air-to-ground missiles. In redlity,
there has been 3 component failures, al involving a component that is part of a redundant
segment of the system. The reliability estimates that result from these two different cases
isvastly different (0.761 versus 0.502).

Correlated System Failure Modes

A complicating factor in system reliability analyses is the possibility that various
components of f [p (PyP,»---, P, &b, d)] may be statistically correlated. In more general
dtuations a system may have a number of possible failure modes that are statistically
related to each other through the physics of system operation. To address thisissue, a
little known family of multivariate distributions will be introduced and subsequently

applied.
Bivariate Sarmanov Distribution

In 1966 Sarmanov developed a bivariate family of distributions which have the capability
of characterizing highly correlated random variables. Lee (1996) rediscovered this work
and suggested its possible use in the area of Bayesian analysis; the following discussion
draws heavily from that paper.

For the bivariate case, define the parameter vector q,, 1=12. Let p(p, |q) be univariate
probability density functions and let j (x;) be bounded, nonconstant functions where

G (p)f(p)dp, =0. Then the function:

PRy P, 1900, Weo) =P (P, AP (P, la) {1+ ()i (p,)}

isabivariate joint density function with 1+w,j (p)j (p,)3 O, for dl p;. Notethat a
similarity measurew,, =0 impliesthat p; and p; are statistically independent. The
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W,
=2

n = 6: pj (P)P(p |9)dp; ands; isthe standard deviation of p;.. The range of the

correlation coefficient of p; and p, can bederived: r = where

smilarity measurew,, can also be shown to be bounded:
ae 1 -1 & -1 -1 0
T Gmm, @ M- m)b &m(1- m) ' m(1- m)
If p(p, |q) isabetadistribution function and the mixing function is defined as

] {(X) =p; - E[p], then the correlation coefficient smplifiesto: r =w,,s s, and the
bounds on the similarity measure simplify to:

“@+h)(&+b) (& +h)(&+b)
max( 3 a,hb,) 27 max( ab,,ab)

£W12 £mn

Multivariate Sarmanov Distribution

Lee (1996) aso generalized the similarity relationship above to n dimensions. Define a
relationship parameter

Reoa(Pu P2 B) =Wogd (BRI (P2) tWid (R (Ps) +
Wad (PI (P3) +Wopd (P () (Py)

E[(p1' rrl)(pz' rrz)(ps - WS)]
$1S3S3

where: W,,; = and m;, =E[p]. Then

<
(P P Bs 160,0:W) = O p (P, 60,8 {L + Roa(B1, o )}
i=

The expression can be generalized:

PPy Parer Py AW) = Qp(pi |a{2+ Ry (B Poes )}

Sampling Approach

Generation of the set of system component reliabilities:

1+ R, (PuPye-np) W
R.I.Z (- J)n(pl p2 """ p-] !!!! pn)ﬁ

can be accomplished easily using the Metropolis-Hastings rejection sampling scheme.
Notethat p(p, |q) isabetadistributionand that since | R E 1:

PCP; | Py Py IO W) =P (P, Iq)J1+

I 1+R, (PyPor-Py)
£2 M
‘Ir1+R12 (- J)n(g p27 ’p jree 1pn)%
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A sample taken and accepted if: MU, £_,l. I+ R, W(PL By Py)

g
11+ R, ion (B Pas-- s p.ja--wpn)lv)'

Expert Elicitation to Construct Similarity Relationships

Recall that the similarity measure can be defined in terms of the correlation coefficient:
Wy, =,/S,S,. Somealgebraresultsin the expression:

w, =(E[pIp,]- Eln])Ysp - Elp]
:\le/[pz - nl]

Obviously the best approach to constructing the similarity measure is via an estimate of
the correlation function based on actual test data. However, if specific data regarding the
correlation between component reliability or failure modes is not available, the parameter
W, = (E[ p | p,]- n])/sf can be constructed via expert elicitation of E[p, | p,]; the
expected values of p; for given values of ps.

These similarity measures might also be the result of expert elicitation using those
techniques being developed at LANL and implemented in the PREDICT software
package.

Discussion

The area of correlated failure modes and the merging of data from similar systemsisa
very fruitful area of discussion. There are many examples and situations where such an
approach would be critical to making the most efficient use of the available test data. For
this reason, discussion of specific examples is presented under a separate technical report
to be released in the near future.

Summary

This report has provided a mathematical foundation for an approach to bring together
data from avariety of sources and provided an approach to combine this datain alogical
fashion. The application of this approach will result in an increased confidence in the
reliability assessment of the nuclear weapons stockpile.

The benefits of using a Bayesian approach were very briefly reviewed and two
alternatives to Bayesian analysis were discussed. The hierarchical Bayes approach was
suggested as having more widespread applicability and also reduced the sensitivity of the
analysis to the assumptions regarding the statistical structure of the prior information.

The fundamental aspects of Monte Carlo Markov Chain (MCMC) were reviewed
including a brief discussion of the methods associated with Metropolis-Hastings and
Gibbs sampling. A methodology for the application of MCMC methods to component
reliability was outlined and applied to a simple example. The approach was extended to
allow the assessment of system reliability using both component prior information and
component test data.
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Finally, an approach to aggregating system level tes data and component test data was
developed and demonstrated through a sequence of test cases.

The discussion and examples presented in this report have been limited to those systems
composed of discrete components, i.e. those that can be characterized as operating or not
operating. However, there is nothing unigque about the underlying principles and the
extension to continuous subsystem/systems is straightforward. In addition, an approach
for considering the possibility of correlated failure modes was also developed. Further
discussion and application of this approach is reserved for a future research report.
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Appendix A. Function Definitions

Name Density Function Mean Variance
Beta(a,b) a-1 b-1 a ab
Bap P &P O<p<i ab>0 a+h @+b+0(a+b)’
Truncated 1 a1 b-1
Beta(a’b,po’pl) B(a,b)(pl- po)a—l(p pO) (pl p)
O£ p,<pfp<l ab>0
Wei bU”(a,b) a&(('ja_l é ee(dal:] 0 e a2 0 =l ou
aa 5 &0 ¢ bG = + 2 G—=+1 - G= 7
beps “Pgepof 702070 ta’s | Pg%a " Ceat o
InvGam(a,b) b As"" 2 bs b2
= - = —, a>1 S
Gaexe % xo X8>0 a-1 @ D@2 277
Bab) | SarD g - oo
Xa)3b)
orif nisinteger >0, G(n)= (n- ]
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Appendix B. Monte Carlo Sampling

Monte Carlo Sampling

For each random variable in a problem, a random deviate is chosen from the sampling
probability density function. Using these values a vector of random inputs is constructed,
X'. This vector of random deviates is used as parameter settings in system model and a
system response, G, is calculated. A series of n sample vectors are generated,
{X*,...,X"}, and associated system response cal culated until sufficient samples have been
generated such that the analyst is confident that the uncertainty in the system response
has been adequately characterized.

The following discussion is extremely brief; there are scores of books dedicated to Monte
Carlo sampling techniques. This section isincluded primarily for completeness and to
provide a basis for discussing variations on the Monte Carlo theme.

Random Number Generation

An essential element in any Monte Carlo scheme is the generation of random numbers.

Knuth (1981) provides an excellent discussion, and the following is a brief ook at only
the more common approaches. It will be assumed that, as a minimum, the generation of
uniformly distributed random deviates from the interval [0,1] is available. Notationaly,
these random deviates will be denoted: U,,. A random deviate from a Gaussian density

function with mean i and variance s > will be denoted: N(ms ?).

There are three fundamental methods for generating random numbers: inversion,
transformation and rejection. Only a brief introduction to these methods will be
presented; the reader is again referred to the many books on simulation, e.g. Ripley
(1987) or Rubenstein (1981).

Inversion

Inversion is the most straightforward method of generating random numbers from a
particular density function. This technique is based on the availability of the inverse
cumulative density function for the density function of interest. For some probability
density functions thisis straightforward, as in the case of the exponential density. In
other cases, such as the Gaussian probability density function, this inverse does not exist.

Assume that the cumulative density function of the random variable is known,
y=P{ X £x}=F(x). Sincey can take on any value in the interval [0,1], it isasimple
matter to generate arandom value y; from U, and then solve: x, = F'(U,,).

Example

Given arandom variable x with probability density and cumulative density functions:
f(xX)=1 exp{-1 %
F(x)=1- exp{- | x} l,x3 0
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The inverse of the cumulative function is easily found:

Since (1-y) is distributedU,, , y is dso distributed U,,. The above expression can be

simplified somewhat and a sequence of random variables from an exponential
distribution can be generated by repeated application of:

X = F-l(U o) =" |_1|r(Uo,1)

Transformation

While the inversion method is extremely straightforward, it depends on the ease with
which the inverse cumulative density function can be computed either analytically or
numerically. In those cases where the inverse is not easily available, an dternative
method for deviate generation is the transformation method. The basic idea behind the
transformation method is to develop a function, which when applied to uniformly
distributed random deviates, transforms these random variables into deviates from the
desired density function. The inverse method described above is, as might be suspected,
aunique case of the transformation method.

Assume a generd two-dimensional case, where it is desired to generate a random number
from the density function, f(x,,%,). Thisdensity function can be described as aresult of
the transformation:

1(y, y%

f (%, %) = 9(Vis o)

(% x,)

where g(y,,Y,) is some function of the new variables y;, y, and

(v, v,
X1, X

is the

Jacobian of the transformation.

Example
The most famous application of the above approach is the Box-Muller method for
generating random deviates from the Gaussian probability density function. Let y;,V,
be independently distributed with density functions, U,, . Define:

¥ = y-2In('y,) cos(2py,)

% =4 -2In(yy) an( 2y,)

therefore:

1 éx, U
Y, = ——arctang 2
2p éX {

The Jacobian is then:
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1'[(yl,y2 é 1 2OLE 1 e X, OU
e e><I0 e expg- =
e €2 : eV € 27
which isjust the product of two independent, standardized, Gaussian distributed random

variables. Therefore, inputting two, independent random variables y;, y, from U, , two
independent, Gaussian distributed random variables, N, can be generated.

Acceptance-Re ection Sampling

Assume that we wish to generate a sample from a probability density function f(x), but
for computational reasons the inversion or transformation methods are not practical.
However, assume that a straightforward method exists for generating samples from a
second, candidate probability density function g(x) where f(x)< Mg(x) and M isany
scalar multiplier. Then to generate a sanple from f(x) the following procedure can be
used (see Figure B.1):

1. generate arandom deviate, x, from
9(x)

2. sample u=U,,

f (x)
Mg(x)

3. Accept x assampleif u<

elsereturnto Step 1

A small value of M isdesired since the

number of samples that must be generated

until an acceptable sample is generated ; X
follows a geometric distribution with mean _ . _
M. The efficiency of the algorithm is also Figure B.1. Rejection Sampling

sensitive to the choice of g(x), i.e. the closer g(x) bounds f(x) the more efficient the
sampling procedure.

Example
Given arandom variable x with probability density function (Beta):
f(x)=x'(1- x)°* a,b31
The bounding distribution, g(x) is distributedU,, . The multiplier is then defined:
_@-2""(b-2""
(a+b-2R"™7?

The Metropolis-Hastings algorithm discussed in the main body is a variation of the above
rejection sampling method. However, rather than accepting/rgjecting x as independent
samples from a desired distribution, the generated sample must depend on a previous
value. Theresulting set of samples constitutes a Markov process.
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